目录
1. 自动求导
1.1 梯度计算
1.1.1 一阶导数
1.1.2 二阶导数
1.1.3 向量
1.2 线性回归实战
1. 自动求导
在深度学习中,我们通常需要训练一个模型来最小化损失函数。这个过程可以通过梯度下降等优化算法来实现。梯度是函数在某一点上的变化率,可以告诉我们如何调整模型的参数以使损失函数最小化。自动求导是一种计算梯度的技术,它允许我们在定义模型时不需要手动推导梯度计算公式。PyTorch 提供了自动求导的功能,使得梯度的计算变得非常简单和高效。
PyTorch是动态图,即计算图的搭建和运算是同时的,随时可以输出结果。在pytorch.....