语音深度鉴伪识别项目实战:基于深度学习的语音深度鉴伪识别算法模型(一)音频数据编码与预处理

前言
深度学习技术在当今技术市场上面尚有余力和开发空间的,主流落地领域主要有:视觉,听觉,AIGC这三大板块。目前视觉板块的框架和主流技术在我上一篇基于Yolov7-LPRNet的动态车牌目标识别算法模型已有较为详细的解说。与AIGC相关联的,其实语音模块在近来市场上面活跃空间很大。从智能手机的语音助手到智能家居中的语音控制系统,再到银行和电信行业的语音身份验证,语音技术的应用日益广泛。那么对应现在ACG技术是可以利用原音频去进行训练学习,从而得到相对应的声音特征,从而进行模仿,甚至可以利用人工智能生成的语音可以以假乱真,给社会带来了严重的安全隐患。
当前,语音深度鉴伪识别技术已经取得了一定的进展。研究人员利用机器学习和深度学习方法,通过分析语音信号的特征,开发出了一系列鉴伪算法。然而,随着生成大模型和其他语音合成技术的不断进步,伪造语音的逼真度也在不断提高,使得语音鉴伪任务变得愈加复杂和具有挑战性。本项目系列文章将从最基础的语音数据存储和详细分析开始,由于本系列专栏是有详细解说过深度学习和机器学习内容的,音频数据处理和现主流技术语音分类模型和编码模型将会是本项目系列文章的主体内......

暂无评论

您必须登录才能参与评论!
立即登录
暂无评论...